
.

E+
lx
o
Lw
&
L
o

I

o
u

$lj

*

1

!

Coop Report: Working at the Jet Propulsion Laboratory
By Amalaye Oyake, } lCSE

Rensselaer Polytechnic Institute, Troy NY (,
,,, ,~,<1 :.1” ~“ : (t[

(’ 1 / ,’,:

This is a summary of my co-op experience in 1994. I am a third year student of
the Rensselaer Polytechnic Institute in Troy NY, My ~najor is Electrical and Computer
Systems Engineering, and my co-op experience with the Jet Propulsion Labs (JPL),
was my first co-op tour,

January 10th marked my first day as an employee of JPL Over the last eleven
months I have had the opportunity to be involved in various jc]bs, I have also had the
opportunity to undergo training. This report will describe my basic tasks, major jobs,
opportunities for learning, and other significant eve] Lts that occurred during my co-
op tour.

Basic tasks cm the iob;
My primary area of work is with the Measure~nent Technology Center group,

of Section 351. This group provides the JPI. community with solutions in-data
acquisition, instrument control, and data analysis. ~’lle Manager of the MTC is I)r. Ed
13aroth, and I worked on projects that were tasked out.

The first task I was given, was to review of a p:~per describing the
programming paradigms used by LabVl EW 3.0, a datii acquisition toed developed by
National Instruments. I had to describe what object orientecl features IabVIEW
possessed, and the ways it is not object oriented. With the assistance of Mr. Chris
Hartsough, 1 was able to complete this review. I)urin[’, the same week, I was able to
assist Clyde Sydnor, in his reports on low pass filter (Iesigns. I assisted Mr. Sydnor in
using Frame Maker, to create his reports, as well givi]lg in input in optimizing the
filter design.

Other basic tasks I was involved with in the M’~C, was the challenge of
learning new software tools on demand, giving Friday morning demos to customers
searching for data acquisition solutions, and managi] [g the resources of a Macintosh
Quadra AV.

N43b4dxdtlriw my c o-qMQwl
l)uring the year, I worked on some major engineering projects. These jobs

included; the end to end test of the NASA Scatterometer, Performing a static “1’est on
the Cassini RTG, Evaluating Prograph CPX, Evaluating, various simulation packages,
Demcmstrations for Ms. Denise Pateros, Dr. Charles Elachi, ancl a c]emo for the National
Alliance of Black School Eclucators. In support of the M~C, I have written several
papers; these include “Porting LabVIEW Code 13etwee] L Platfcmns”, “Visual
Programming with Prograph CPX”, as well as creating a repcjrt for Mike Shumate’s,
structural analysis work.

A brief outline of these projects is as follows;

a. The NASA Scatterometer project: I assjsted Mr. Phil Yates on the NASA
Scatteromter project, an instrument that will monito] sea conditions from the AI)I?OS
satellite. I’he test involved was an end to encl test, which involved simulating the
actual return signal. I was able to gain some experience using wave guides, function
generators, and microwave generators. Working cm tliis job taught me important
safety tips, while working with microwaves.

2b The Cassini RTG Static Test: On this project, I performed a static test on
~e Cassini Radioactive Thermal Generators, uncler the supervision of Mr. Doug Clark,
with the assistance of Consuela Hargrove. In this ex] leriment a mass model of the RTG
was subject to various physical constraints, such as heating ancl tension, and
readings were taken along the mass model of the various temperatures at different
points, as well as the stresses using strain gauges. My task was to design a virtual
instrument, to record all relevant data, creating files and real time charts and graphs
of the incoming data. Fig 1. shows the front panel oi the program. The Front panel
represents the user interface between the hardware and the operator. The core code
was written in about three days using National Instruments l.abVIEW 3.01, on a 486
Pc.

! 1. Th e~frc)n panel
1

fig 2. sample I,abVIEW 3,x code

.,/

3 c“ Product Evaluations: An ongoing task that I performed through out the year
was the evaluation of various simulation packages and new development packages.
Among these were Prograph CPX, BuilciSim, and G2. Prograph was a product that was
actually purchased by the Measurement Technolog}f Center. While evaluating
Prograph CPX, I wrote small applications, demonstm ting its capability in the area of
Data-acquisition. Prograph uses a visual syntax, thus there is textual code, except in
the naming of the various visual objects. Fig 3. shows the visual code, Fig 4 shows the
calculator implemented by this visual code.

Pus)) LWt+m~~\Y
v @v v

Di i t

?

Operator = clear

L A <<Push Button>> implements the

(Bv standard Macintosh Push Button
Control.

D e c i m a l ‘= = = = =

A default <<Push Button>> in a
<<Window>> responds when the user
presses the Enter of Return key.

fig 3. the visual code of Prograph CPX

==== MTC-Cdcu18tor sccs~s
-— z

———.

m Clkdator

.—— —

LImmm
mEHzH3
tzKElmm
El@KxIl 4
C.w!l Czcl

—— ..-

———.. .—. -— z

fig 4. the calcula [or application

d. Official Demonstrations: At various times representatives from different
Sections or l)ivisions on the Lab, representatives fronl industry, representatives from
specific interest groups, and specialized organizations, visit the MI’(, The visual
programming tools and the relationship to the object oriented pal”adigm are areas
usually discussed. Other demonstrations inclucie the integratioli of software and
hardware instrumentation. I have had the opportunity to give demonstrations to Dr.
Charles Hachi, Director of the Space and Earth Science Programs I)irectorate; The
National Alliance of Black School Educators (NASBE); Denise Pateros, Associate Dean
of lJndergraduate Admissions, Rensselaer Polytechnic Institute.

:/>

4
. . . .~ortumes for le.ammg

Training opportuni~ies have been available within my section. While on CO-OP
I have learnt how to use several tools. The most important however have been
LabVIIiW 3.x and Prograph CPX. From oct. 17 to Oct. 21, I attended a Fundamentals of
Prograph CPX class, in Reclwood City California. I have also attencled numerous
National Instruments seminars at JPI,.

9ther Sigmfuxmt E. .
Vel-1$.s

During my co-op tcmr I had the chance to visit the fc)llowing aerospace
facilities; Vandenberg AFB, Edward’s AFB, The Palomar Observatory, The Space Craft
Assembly Facility at JPL, The Goldstone Antenna Range as well as other on lab
scientific sites, such as the Micro-devices lab.

REPORT FOR

MIKE SHUMATE

STATIC LOA.DING TEST

JUNE 15th 1994

MTC 3510

refi Amalaye Oyake - MS 12.5-177

(’;

4 9 0 . 5 .~

I .—. —-—? I ——— 1

I — — -,.
F

— — -,. —

I

4- 1 9 . 1 1 - A 4
i——

I

.-

— — 1 . . - - - , -—t-—.—— —_J—

I
I

Total flocm loading == 2547.1- 537,8+108.7= 2118.0

2118.0Loading per inch on rails =- -Tz---- == 2!).0 lb/in

Qynamic Loading on Tabs and Floor Attatchernents

- — 90.5 ?
I

I I
I

1 ,

I

ql R2 R3

I 37 36 I
*——--- ——–4 +——-— - - - - - — - - -

I I I

N90.S) = 9(2547 .1)(7.66)-2547.1(19.11) ‘

“1’otal effect on I,oad at O:

IIorizonla] = 9(2547.1)02= 22924

Vertical = 2547.1 -E 1402 + 108.7= 4058

l:rorn symmetry, we need to only look at one bay

bar center to
member center

//assume }1] = 112 = 113 =114623 := 3821

I,et R2 = 1;2 be a redundant Force, consider vertical loading only.

I I
I

RI

bar center to
member center

.381F3+ ~z+.~91~1 = 2029

.924Fs+ =.920Fl
F4 =.924F3

l’~ =.920Fl
F]== 2634 --1.3F2
F3 = 2622 -- 1.29]22
F4 = 2423 --1.19Fz
]~s=242~--].l9~z

~, ~ jOOI-..442F, 1?, = 1001–.442J’2

~, D 1029...508~2° R, = 1029 -.508F2

Z4EU = [(2622 + W’2)(39.1) + (2622 - 1.29~2)(40.~)
+1’j(15.28)+ (21/23 -l.191’2)2(73)]

~u ,Z ().
== 1.3(39.1)(2634 - 1. W’2)-- 1.29(2622 -1.291’,)(40.03+ 15.28F2)——

dr’2 ‘ –1.19(2923 -1.19 }’’,)(73)=:0

479,769 =251.8 F\; F,=1909=l<2

R, =61.8

1<3 = 58.2

—-. — —— ..- ~“–——’——

HI
RI R3

Assume pivot about A;

R(= R;= R;l?(73) = 11,462(1 8.53)*;R = 2909

* pivot about pin.

at pin:

position F y

1 3821
2 3821
3 3821

Fz
2848
-1909
-2967

l)in leading on l’ab.
Pins are loaded in double shear.

““” F,,,,ax = [3.821 2 -t 2.9672]% ‘) lo’ ‘48381b
~ = ‘a—~-’) ; (?=pin radius =-)’(6 , @.. ~’ab wiclth = ~-----s Illax

9.= max. bearing stress (sine dist.)

‘“- ~,, == 43.8 hsp’ (less than bearing allowable, so o.k.)

Porting Labview Code Between Platforms

By

Amalaye Oyake, Member Te(hnical Staff”
Jet Propulsion Laboratory, California Institute of Technology

l)(’.:,(‘~,(i~’, , ((\. ({ (1’.’.(~

Abstract

The Measurement Technology Center, prcwidcs SOIU tions to various scientific
and engineering tasks that are encountered at JPL. I’he need to be able to quickly
produce software applications for data acquisition, ciata analysis and visualization,
has been an important focus. LJsing Labview as a tool to tackle such problems has
been very successful. However, an important proble] n has presented itself in trying
to provide our services quickly and easily to the JPL community. This problem has
been the various kinds of computer platforms that exist and support Iabview, and
how to port Labview between these platforms. Currently Labview runs on the
following platforms:

- Mac 11 and Quadra series
- Windows 3.x series of computers (386 or gl-eater)
- The Sun Spare series
- The 11P 9000 Series 700 (11P 745i)
- Windows N’1’

A problem has been the difficulty migrating from L:~bview 2.x to Iabview 3.x. “l-his
has become important, because for different reasons a given Iabview application
will need to run on a 486 PC running Wincknvs as WC1l as a Mac Quadra.

What this paper looks at is a case stucly: Porting the DI{MO BOX application from
I.abview 2.2 on a Mac to labview 3.1 b on a HP 745i

Introduction

Performing this task required the follc)wing steps:

1) I,oading and saving the code under I,abview 3.1 (Mac)
2) Rewriting the 6b Serial l’ort lnit sub-vi.
3) Ftp’ing the code to the 111) 745i
4) Loading and re-saving all the code in Labview 3.1 b on the 11P 745i
5) Reloading all sub-vi’s
6) Rewriting the string-to-boolean array sub-vi
7) Running the code

.Loading and savinq the 2.2 COCIC under Lab@w_U. fl!&NX

This step was necessary, so as to preserve the core I.abview cocle. There is no
guarantee that Iabview 2.2, code can be loaded into Labview 3.x versions on a system
other than a Mac. Thus, without modifying the files or the code, the demo box
application was loaded and m-saved uncler l.abview 3.1 using “save as”, to protect the
originaI files.

.

Re . .wrlt~ the 6b Serial pow=

Labview 2.2 handles serial port initialization differe] Ltly than Iabview 3.1. Thus, the
serial port initialization code on Labview 3.1 had to be rewritten to account for this.
This one major hurdle when porting any 2.x. application to a Iabview 3.x. The code
for port initializations is now standardized across all platforms in Iabview 3.x.

Once all the code has been saved under Labview 3.1 on the Mpcintosh, a means of
transferring it to the HP 745i must be found. The best way to’this is by using ftp. NCSA

kTelnet 2.5 is recommended for doing it from a Mac, or save t e cocle to a PC formatted A
floppy (using Apple File Exchange), and ftp it from a. PC based nctwcmk for example:

PC-486> ftp amaretto.jpI.nasa.gov
220 amaretto FTP server (Version 1.7.193.3 Thu Jul 2218:32:22 GIvfl’ 1993) ready.
Name (amaretto:aoyake)
331 Password required for aoyake.
Pass word:
2.?0 User aoyake logged in.
ftp> binary
200 Type set to I
ftp>
(figure 2. example ftp commands)

IYQla!.i&w_usQlitlwJdQI

I,oading and re-savin~ a 11 the code in Iabview 3. l_b_ol~l’ZfL5i;

The code must then be reloaded into Labview 3.1 b on the 11P 745i. I.abview will start to
look for all the associated sub-vi’s. 1 abvicw must be told to ignore the search, since it
will it look for the sub-vi’s in the locations they existed on before the port, which
will not exist on the new machine. l’his problem is usually caused by the file naming
conventions of each independent operating system; ftp or any file transfer method
will result in some reformatting or truncation of the file name when moving
between the Mac, 1)0S, or UNIX systems
Broken arrows may mean, missing sub-vi’s within the sub-vi, which is not a problem
since these can be manually relc)aded also.

Reloading all sub-vi’s:

Once the code has been saved under Iabview 3.1 b, all the sub-vi’s must be reloacled
into respective positions. A missing sub-vi will appear as a cluestion mark, within a
frame. LJsing the corresponding mouse clicks, it must be replaced with itself, using < !\
the “replace” option. Replacing a sub-vi by itself involves fincling i[’~ file, since
during an ftp process the file’s name might have changed slightly, and it would not
be in a directory where Labview would think it is. This process must be repeated for
all missing sub-vi’s.

❑ {“”z=y-— b-x—
.

pij

(figure 3. a missing sut)-vi)

Re . .wrti the strm.p- t@bQ~.~i

“String to boolean array” does not exist in Iabview 3.x on any platform. However, it
does exist in Labvicw 2.x, and is an integral part of the demo box application. It had to
be rewritten (see diagram below)

s t r i n g -’+pJ— . . . boolean array Iml”’”’ ““””” -+ ~i-1
String To Boolean Array

(figure 4, the function ancl the sub-vi “string to boolean array”)

Kunning the cock:

Once the code has been completely ported and there are no longer any broken
arrows, the application must be tested. Sometimes an applicaticm will not run due to
the fact that sometimes a given hardware platform will impose i{ ’s, behavior on the \
operation of software code. For example, to assume hat serial ports behave the same
on the HP 745i as the ports on a IBM compatible sys[em is a mistake. Although it is a
safe assumption, it could have easily not been the case. In the case of the demo box,
the only two hurdles were rewriting the “serial port init” and the “string to boolean
array”

Conclusion

When porting l,abview from different platforms, obey the guidelines listed
above, and always be wary of functions omitted fro~n Iabview 2.x. It is a fairly simple
task to port the applications, however, it does take time and patience, and a fair
knowledge of the Operating Systems you are movinf’, across. “l’he demo box application
behaved very well while being ported from the Mac Quadra 950 to the
11P 745i. There was not any difference in front panel colors, and all the user objects
maintained their respective places on the screen. National instruments maintains a
stringent programming format, consistent across all platforms running Labview.
This makes it a very well;behavecl system if one wisl les to develop similar scientific
or data-acquisition apphcations for different platforms.

——.—..—- .—-— — . ..- . .. ——. ———
M@ilFWCI -T — -——-——- ..— —. — -— -—-——-—— I

V.,the? c.**.. d

sOO-

400- 1
300

-1 I
200-1

● [—-—–~m~_—-———
Cwr.fi! T.m+.r.tw. “cl ro ~ J————

‘1
\m_rn*J:rj_ .

I

00?’--’/’””-- ~:zi ,=-r—--

(figure 1. the demo box application)
Notes 011 thC])(21110]~OX;

The demo box is a demonstration of a control and cl,ita acquisition system. labview
controls a “traffic light” setup, and a heater, and also reads temperature, resistance
ancl voltage clata.

It was originally designed on I,abview 2.2 on a Mac IIfx, and for the purpose of this
report, was ported to a 11P 745i.

‘“)

A ~ornplelely visual Object Oriented Programming (OOP) language \
An editor/interpreter with a builtl~n debugger
A GLJI builder
An Integrated database engine
Support SQI, databases
A 680x0 compiler
Support for integrating C libraries into Prcjgraph a])plications

Introduction

l’he Prograph language is a very good irnplenlentation of several modern
paradigms in computer science such as data flow, OOP prc)perties like inheritance

<’

(only single heritance is supported) and polymorphism. It@ ~ provides a pictorial
programming format, textual syntax is absent, text appearii~g only in comments, and
naming methoc]s and classes. Reusability of code is lJart of programming in this
language, which is simply a matter of cutting and pasting the c-ocle. The
editor/interpreter, couplecl with the comp”ler provi(ie a ve]y friendly programming

! \environment, It allows you simultaneously, krcate and edit your application, thus
removing any subsequent bugs that may appear in an application.

l-he Measurement Technology (enter (M1’C) is concerned with providing the
JPL engineering and scientific research community with toc)ls ancl solutions in data
acquisition, instrument monitoring and control, as well as data analysis and display.
I ‘,neccessary to have the capability to provicie these soluticms as quickly as the
Y

“\

emand recluires. Traditional software solutions in these areas usually involve
languages such as BASIC, C or C++, anti require the])rogramnmr to clesign everything
from the user interface to the essential data acquisition code.

To solve complex problems and to meet the clcrnancls of engineers and
scientists, it has been demonstrated over time that visual programming tools can
provide a quick and easy way to achieve the objectives of a project. These
applications developed have met the requirements c)f the respective clients. For
further reference see MfC Tasks, Ott 14th 1994.

In the MTC, the visual programming tools of c hoice have been Labview 2.x and
3.x versions by National Instruments, and HP-VEE by Hewlett Packard. As seen by the
completed tasks list most of the jobs have involved lnostly Labview, although there
have been a few lIP-VEE jobs.

.

The need to diversify, and add other visual p] ogramming tools is one of the
areas being looked at by the MrC. Prograph was presented as a possible tool that could
be used within the M~C. It is more general purpose that Labview, however it does
allow additions to it’s capabilities by the user, third]Jarties, via C an~ Pascli code ,, {
conversion tools. c <,(/

l!’ ‘ ‘
David Prue of Acme Mining and Software inc. MD, has developed code that

allows one to perform data acquisition from National Instruments Boards, and he
provides a set of primitives implementing the basic NI-DAQ funct ions. Along with
these external primitives, Prograph Int. itself provides a robust set of primitives that
support most any data operation (please see figures 1. and 2.). Thus it is possible to
perform data acquisition with Prograph, the leveI of complexity however has yet to
be explored.

Dan Shafer, author of several compuler related books, and an authority in
Object Oriented Programming, hosts a class in Redwood City, t~ aining users in
Prograph. Topics covered include;

- Introduction to Prograph CPX, and what it is,
- The “Hello Worlci” example in CPX
- The Editor/Interpreter and the application buildinf, process
- C.S. and how 00P is implemented in Prograph
- GUI IIevelc)pement and Documents
- Tips and techniques of debugging
- Primitives, External Primitives, Controls ancl Operations
- Accessing Macintosh OS resources
- Compiling the case study application

The class is ,over a four day period and exposes the student to other users from various
background’ and is very hands on. In the time spent there one is able to find out
specific solutions to some of the problems of llAQusing Prograph.
At the end of the class there is an experiment with a case study application (see
figures 3. and 4.). Mr. Shafer is also the author of th{ only third party text book on
Prograph, “The Power of (PX” 1). Shafer 1994.

———— .—-—— ________

Project Ihfo:
~Hierarchy - Unwersds ~ert]stcnt$

Environment Info:
P_CMLw MOWQMMwr.q
Q!M9PE
[xtern@l Methods External structures
W!al conltan~! L&@-.W@

Externals Info:
Primitive files Definition Files,

(figure 1. the Prograph CPX info menu)— — — — . — - .—— _ _
[~~] ~SHl@rd~ ‘–”-]

.——_. ——-
, 7 I----X&k

c=: - “ 1diiii Lgo;(l,p I— —-;,., ,_

t

ATP-Close
~TP-Get-Req~e~
ATP-Get-Respcox
ATP-Open
ATP-Sehd-Requ~s~
~TP-Send-Respwmr
~@
abort-callback
*

>1~

_

~i~
li t -sh i f t - l

~
;am
:alled-from-qet.
Lalled-from-metJ
~alled-from-se!
:alls+o-qet
Lalls-to-meth
:alls-to-set
-
&o&
:lass-com

DIG-Blk-Check
~lG-Blk-Clear
DIG-Blk-Start
l)lG-in-Line
DIG-in-Port
DIG-Out-Line

. .-.

arcrep~
*
address-to-oh ject
ancestors
@
.3p3y,
~n~r
answer-v

bit-shift-r
hr.
block-address.

class-sectiofl

Qals
clear-bvtes-map
*
close-serial-port
cluster-delete
cluster-lock
@ter~r~~d
cluster-replace
cluster -unde~e~f:
Qluster-unlQ*

as
&cg~nJ!
db-delct~
db-flush
db-info——
@-b

@n_
?@
@.aiJ
~
H
attach-r
attr-com
attributes

block-siz~
boolean?
break-serial-p~r~

cluster-wr~e
compact-memory,
compiled?
compound
confiqure-sp~r~
WY,
co,
;~nt-spor~np.uj
W
create-class
create-method

@bug
U
descendants
*t&]

detach-nth
detach-r

.—

(figure 2. primitives list of Pro{:raph CPX)

Conclusion

Creating a GUI and the supporting applications is very easy with Prograph
CPX. Building a GUI simply involves putting the c)bjects available on the palette on
your Edit Application window. Writing code, though not quite as simple as building
the GUI or writing code in Labview, is also fairly eas} to accomplish. The difficulties
in Programming in Prograph CPX, lie in understanding the AK Starter Project
(Prograph’s equivalent of stdio.h), the Apple toolbox, and becoming familiar with the
order and dataflow principles. Some knowledge of OOP principles helps tremendously,
for example, knowin~ what a Class is, ccmcepts such as Member functions,

~lymorphism and Inheritance, :
MTC Calculator =====

—.

m Chkulatm

r——. ‘1
‘EXZIEIEI ‘
mEIE)El
[mcmxzl
miilE.l El
(IEEE) Gicl

—..

well as Instantiation.

1

A

dlkl)..

(figure 3. Calculator code showing inheritance)(figure 3. MTC Calculator)

When one does become Familiar with Prograpl L, it is a pc)werful tool.
Applications like BuildSim (Tangent Systems) or MT(: Calculator (case study - Ml’C, see
figure 3.), were made using Prograph. Therefore due to the support, it is possible to
build a data acquisition application using Prograph CPX. If there is any C code
involved it can be converted to a Prograph primitive automatically via the CTOO1 or
manually using Xprims. The resulting application will be stancl alc)ne program, and
can be delivered to the customer.

*

CO-OP Presentation: \\
Visual Programming and it’s Applications

By ‘
Dr. Ed Baroth

Arnalaye Oyake 1’ ~
3510, M’1’C Grou], (’ “ “

~ \’,$ (/
)

What ~ Visual l%Q&immb@

There are several definitions:
(a) Visual Programming (VP) refers to any system that allows the
user to specify a program in two-(or more) -dimensional fashion.
[...] conventional textual languages are not considered two
dimensional since the compilers or interpreters process them as
long, one-dimensional streams. [Myers90a]

(b) A Visual Language manipulates visual information or supports visual
interaction, or allows programming with visual expressions, The latter
is taken to be the definition of a visual programming language.
Visual programming languages may be. further classified according to the
type and extent of visual expression used, into
icon-based languages, form-based languages and diagraln larrguapes.
Visual programming environments provide graphical or iconic elements which
can be manipulated by the user in an interactive way according to some
specific spatial grammar for program construction. [Golin90b]

The need to meet deadlines and complete projects has berm a concert, for progranlmcrs involved; notably projects
involving scientific research, Visual Programming, is quickly becoming the prefelre.d way of meeting project
requirements. Visual programming uses the visual objects to create fully functional programs. l’hese programming
languages, tools, or application rnodellers attempt tc~ achieve tbe prof:ramming power of languages such as C or
c++.

Non Visual Programming Languagm

Despite their names Visual Basic and the entire line of Micl osoft Visual (tin) family (Visual C++ and the
like), are not visual programming languages. These languages use a (}UI builcler, layerccl on top a textual language,
hence tier narnc.

Cmuneuialhuwages AVailabLdlx@

1

Prograph Prograph Int’1
Serius Developer
PhonePro Cypress Research
Iconicode
L.abVIE~W National Instruments
Design/CPN Meta Software
SystcmSpccs Ivy Team, Bern Switz
HP-VW Hewlett Packard

Two Languages will be looked at today:

National lrrstruments LabVIFiW

2. Prograph International’s Prograph CPX

800-927-4847

408-752-2700

800433-3488
617-576-6920

80i-452-4844

LabVIEW is a graphical programming system designed for data acquisition and ccmtrol, data analysis, and
data presentation. It can also perform the equivalent operations of textual pro~ramlning language, e.g. file searches,
printing operations etc.

.

Prograph is a Visual Object-Oriented, Dataflow Model, Dynamic Prograrnrning and Debugging
Environment. It uses object oriented principles such as classes, inheritance etc., [o create fully functional computer
programs.

l’oints To Note

Both labVIEW and Prograph can import C code.

LabVIEW places more emphasis on data flow while Prograph is an object oriented product.

. Using visual programming languages makes it much easiel to port between computer platforms

Both products are demonstrated at the MTC (125 -B32) every Friday, between 9:OOam and 12:OOpm

m

. .

—..

B<... mT

!Eaq
E!zm@ “

f w) Lwta’1d!kl)v v 4 v
Di it

r

Operator = c lear

@
v

Decimal

an example of lab VIEW code an exomple of l’rograph code

